Technical Name Developmention of the remote-controlled electrospun machine and the drug delivery scaffold for medical applications
Project Operator National Sun Yat-sen University
Project Host
Summary
In this study, the electrospinning machine with a remote-control function was developed to fabricate the polymeric nanofiber mesh for tissue engineering application. The self-assembled electrospinning machine composites of the three-axis control system, stage controller with high-voltage bias power supply and remote-control model. The conditions of fabricated nanofiber mesh, such as dimensions, geometries and length, are defined by several parameters, including bias voltages, the injection rate of polymeric solution, stage distances between the injection needle and collection stage and moving speeds of the stage. Fabrication parameters of fiber meshes can be analyzed by using developed software and then sent from desktop computer via the wireless model to the electrospinning machine to produce required different diameters and geometry of the nanofibers. The fabricated smallest diameter of electrospun fiber reached to approximate 150 nanometers and fabricated fiber mesh had a high porosity and surface ratio that provide an ideal microenvironment for cell attachments, proliferations and differentiations as shown in the in-vitro cell culture experiment. For this, the above advantages of the nanofibers are regarded as an appropriate drug carrier. To produce effective wound dressing, some criteria about drug delivery ability and cytotoxicity should be postulated. Hence, the biocompatible PCL2b200 nanofiber mesh and beads containing epidermal growth factor (EGF) were fabricated separately by using our developed electrospinning and electrospray process for the tissue regeneration applications. The drug release behaviors of two fabricated EGF nano-scaffolds were characterized for 448 hours. The EGF nanofiber mesh performed the quicker released speed and higher release amount than beads. Due to the influence of released EGF, nanofiber mesh also reveals a better proliferation and cell viability than beads that was proved by using the MTT assay. In accordance with the above characteristics of the fabricated nanofiber, it encompasses the potency to be an ideal biomaterial to apply for tissue engineering.
Scientific Breakthrough
本技術開發出一機台可透過無線連網的方式,在電腦端進行遠端操控,完成參數設定與奈米纖維敷料自動化製作等多種任務。其技術特點如下:
1.遠端操控與自動化生產技術:透過無線資料傳輸模組,本機台能與遠端電腦亦或行動裝置進行連結,完成各項參數設定與敷料紡製,實現遠端操作智慧機械之理念。
2.快拆式複合平台: 在收集器方面本團隊所設計的為複合類型拆換式,能夠快速更換收集板樣式、成絲面積涵蓋範圍大,可將產品的品質提升。此外,更在機台定位上要求精度,利用高靈敏度馬達精準控制所有成絲位置以及調整工作距離,每秒最小推進距離能達到0.001mm。
3.客製化軟體與敷料製作參數資料庫: 本機台能利用資料庫之參數,選擇所需之敷料特性,如敷材的孔隙率、纖維直徑、光滑表面、多孔表面、球狀等奈米纖維以及不同方向與形狀之奈米纖維等。藉由此優點能提升應用廣度,加強相關領域之競爭力。
4.釋放控制型藥物乘載敷料: 具有不沾黏、高體表面積、材料降解速度慢、藥物釋放性能高等特點。利用纖維狀與顆粒狀不同結構所對應之釋放速率,達到控制藥物釋放願景。
Industrial Applicability
透過靜電紡絲技術製備奈米纖維為紡織工程中一展新指標,此技術改變了材料的物理和化學性質,如高孔隙率與體表面積比。其應用場域亦包含許多面向,以下將針對四大產業探討其應用性。
1. 寵物醫療
由於寵物相對於人類而言較不易進行換藥與包紮等手術作業,因此開發一長效型藥物釋放效果與沾粘性強之敷料便是此領域之開發重點。透過本研究之可控制式藥物釋放敷料將能有效解決此問題,而敷料良好的沾粘性對於活動力大的寵物而言也是一大福音。
2. 智慧農業
透過特定的藥物釋放系統與載藥量控制技術,將能有效的應用於農業驅蟲或是自動施灑肥料養分等,讓農民能夠零誤差的監控目前農作物的養分供給量等資訊,實現智慧農業化之理念。
3. 智慧機械
日前推動之工業4.0已讓許多工廠轉型為自動化生產,除了能降低人事成本,亦能減少人為加工之誤差。但此生產方式僅適用於單一標準化大量生產,若須進行客製化產品生產,仍須透過人為操作機台來實現。而本研究開發之系統資料庫與分析套裝軟體,將可整合各類參數找出最佳資料,製作出最佳化、最適合客戶需要的產品。
4.奈米醫療藥物
將奈米級醫療藥物透過靜電紡絲技術包覆於奈米纖維中,並製備成可控制藥物釋放量之生醫材料,透過近紅外光照射或改變溫度等外加條件,增加纖維體表面積或是生成多孔表面,使得藥物能針對特定患部進行釋放與治療,達到標靶治療之功效以及避免不必要之浪費。
Keyword
Notes
  • Contact
other people also saw